Как повысить мощность двигателя: варианты для бензиновых и дизельных моторов. Как увеличить мощность двигателя-основные технические и программные методы Увеличение мощности асинхронного двигателя

Инструкция

Подключите электродвигатель к источнику тока с изменяемой ЭДС. Увеличивайте ее значение. Вместе с ней будет увеличиваться напряжение на обмотках электродвигателя. Учитывайте, что если пренебречь потерями на подводящих проводниках, которые очень незначительны, то ЭДС источника равно напряжению на обмотках. Рассчитайте увеличение мощности электродвигателя. Для этого найдите, во раз напряжение, и возведите это значение в квадрат.

Пример. Напряжение на обмотках электродвигателя было увеличено со 110 до 220 В. Во сколько раз его мощность? Напряжение увеличилось в 220/110=2 раза. Поэтому мощность двигателя стала больше в 2²=4 раза.

Перемотайте обмотку электродвигателя. В подавляющем большинстве случаев, для обмотки электродвигателя используется медный проводник. Используйте провод такой же длины, но с большим сечением. Сопротивление обмотки уменьшится, а ток в ней двигателя во столько же раз увеличатся. Напряжение на обмотках должно оставаться неизменным.

Пример. Двигатель с сечением обмотки 0,5 мм² перемотали проводом с сечением 0,75 мм². Во сколько раз увеличилась его мощность, если неизменно? Сечение обмотки увеличилось в 0,75/0,5=1,5 раза. Во столько же раз увеличилась и мощность двигателя.

Видео по теме

С появлением автомобиля одной из главных проблем стало . Как известно, на это влияет количество сжигаемого топлива в течение рабочего цикла, что, в свою очередь, зависит от количества поступающего в камеру сгорания воздуха для образования топливно-воздушной смеси.

Инструкция

Увеличение размеров камеры в конечном итоге приведет к увеличению мощности, но и одновременно к увеличению расхода топлива и . Революционную идею в деле увеличения мощности двигателя выдвинул еще в 1885 году основатель будущей автомобильной империи Готлиб Вильгельм Даймлер, предложивший подавать в цилиндры воздух под давлением с помощью , работающего от вала двигателя. Его идея была подхвачена и усовершенствована Альфредом Бюхи – швейцарским инженером, который запатентовал устройство для нагнетания воздуха, работающего от выхлопных газов, что легло в основу всех современных систем .

Турбонагнетатель состоит из двух частей – ротора и компрессора. Ротор приводится в движение от выхлопных газов и через общий вал запускает компрессор, сжимающий воздух и подающий его в камеру сгорания. Чтобы увеличить количество воздуха, поступающего в цилиндры, его необходимо дополнительно охладить, поскольку в охлажденном состоянии его легче сжимать. Для этого используйте интеркулер или промежуточный охладитель, представляющий собой радиатор, смонтированный в воздуховоде между компрессором и цилиндрами. В момент прохождения через радиатор разогретый воздух отдает свое тепло в атмосферу, а холодный и более плотный поступает в цилиндры в большем количестве. Большему количеству выхлопных газов, попадающих в турбину, соответствует большая скорость ее и, естественно, больший объем воздуха, поступающего в цилиндры, что увеличивает мощность двигателя. Эффективность такой схемы подтверждается тем, что для работы наддува требуется всего 1.5% всей энергии двигателя.

Если имеется необходимость подключить асинхронный трехфазный электромотор в бытовую сеть, можно столкнуться с проблемой - сделать это, кажется, совершенно невозможно. Но если знаете основы электротехники, то можно подключить конденсатор для запуска электродвигателя в однофазной сети. Но существуют и бесконденсаторные варианты подключения, их тоже стоит рассмотреть при проектировании установки с электромотором.

Простые способы подключения электродвигателя

Проще всего будет подключить мотор при помощи частотного преобразователя. Существуют модели этих устройств, которые делают преобразование однофазного напряжения в трехфазное. Преимущество такого способа очевидно - нет потерь мощности в электродвигателе. Но вот стоимость такого частотного преобразователя довольно высокая - самый дешевый экземпляр обойдется в 5-7 тыс. рублей.

Есть еще один способ, который используется реже, - применение трехфазной обмотки асинхронника для преобразования напряжения. В этом случае вся конструкция окажется намного больше и массивнее. Поэтому проще окажется рассчитать, какие конденсаторы нужны для запуска электродвигателя и установить их, подключив по схеме. Главное - не потерять мощность, так как работа механизма будет происходить намного хуже.

Особенности схемы с конденсаторами

Обмотки всех трехфазных электромоторов могут соединяться по двум схемам:

  1. «Звезда» - при этом концы всех обмоток подключаются в одной точке. А начала обмоток соединяются с питающей сетью.
  2. «Треугольник» - начало обмотки соединяется с концом соседней. В итоге получается, что точки соединения двух обмоток подключаются к сети питания.

Выбор схемы зависит от того, каким напряжением питается мотор. Обычно при подключении к сети переменного тока 380 В обмотки соединяются в «звезду», а при работе под напряжением 220 В - в «треугольник».

На рисунке выше:

а) схема соединения "звезда";

б) схема соединения "треугольник".

Так как в однофазной сети явно не хватает одного питающего провода, нужно его сделать искусственно. Для этого применяются конденсаторы, которые сдвигают фазу на 120 градусов. Это рабочие конденсаторы, их оказывается недостаточно при пуске электромоторов мощностью свыше 1500 Вт. Чтобы осуществить запуск мощных двигателей, потребуется дополнительно включать еще одну емкость, которая облегчит работу во время старта.

Емкость рабочего конденсатора

Для того чтобы узнать, какие конденсаторы нужны для запуска электродвигателя при работе в сети 220 В, нужно использовать такие формулы:

  1. При подключении по схеме «звезда» С (раб) = (2800 * I1) / U (сети) .
  2. При подключении в "треугольник" С (раб) = (4800 * I1) / U (сети) .

Ток I1 можно измерить самостоятельно, используя клещи. Но можно использовать и такую формулу: I1 = P / (1,73 · U (сети) · cosφ · η).

Значение мощности Р, напряжения питания, коэффициента мощности cosφ, КПД η можно найти на бирке, которая приклепана на корпусе электродвигателя.

Упрощенный вариант расчета рабочего конденсатора

Если все эти формулы кажутся вам немного сложными, можно воспользоваться их упрощенной версией: С (раб) = 66 * Р (двиг).

А если упростить по максимуму расчет, то для каждых 100 Вт мощности электромотора требуется емкость около 7 мкФ. Другими словами, если у вас мотор 0,75 кВт, то вам потребуется рабочий конденсатор емкостью не менее 52,5 мкФ. После подбора обязательно произведите замер тока при работе мотора - его величина не должна превышать допустимые значения.

Пусковой конденсатор

В том случае, если на мотор воздействуют большие нагрузки либо его мощность свыше 1500 Вт, одним только сдвигом фазы не обойтись. Потребуется знать, какие необходимы еще конденсаторы для запуска электродвигателя 2,2 кВт и выше. Пусковой подключается в параллель с рабочим, но вот только он исключается из цепи при достижении оборотов холостого хода.

Обязательно пусковые конденсаторы должны отключаться - в противном случае происходит перекос фаз и перегрев электродвигателя. Пусковой конденсатор должен быть по емкости больше рабочего в 2,5-3 раза. Если вы посчитали, что для нормальной работы мотора требуется емкость 80 мкФ, то для запуска нужно подключать еще один блок конденсаторов на 240 мкФ. В продаже вряд ли можно встретить конденсаторы с такой емкостью, поэтому нужно производить соединение:

  1. При параллельном емкости складываются, напряжение рабочее остается таким, как указано на элементе.
  2. При последовательном соединении складываются напряжения, а общая емкость будет равна С (общ) = (С1*С2*..*СХ)/(С1+С2+..+СХ) .

Желательно устанавливать пусковые конденсаторы на электромоторы, мощность которых - свыше 1 кВт. Лучше немного снизить показатель мощности, чтобы увеличить степень надежности.

Какой тип конденсаторов использовать

Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов. Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП. Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.

На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов - они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.

Использование электролитических конденсаторов

Можно применять даже электролитические конденсаторы, но у них есть особенность - они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно - они имеют свойство взрываться.

Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.

Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400... 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.

Рабочее напряжение

Обязательно нужно учитывать один важный параметр конденсаторов - рабочее напряжение. Если использовать конденсаторы для запуска электродвигателя с очень большим запасом напряжения, это приведет к увеличению габаритов конструкции. Но если применить элементы, рассчитанные на работу с меньшим напряжением (например, 160 В), то это приведет к быстрому выходу из строя. Для того чтобы конденсаторы функционировали нормально, нужно, чтобы их рабочее напряжение было примерно в 1,15 раза больше, чем в сети.

Причем нужно учитывать одну особенность - если применяете бумажные конденсаторы, то при работе в цепях переменного тока их напряжение нужно уменьшать в 2 раза. Другими словами, если на корпусе указано, что элемент рассчитан на напряжение 300 В, то эта характеристика актуальна для постоянного тока. Такой элемент можно использовать в цепи переменного тока с напряжением не более 150 В. Поэтому лучше набирать батареи из бумажных конденсаторов, суммарное напряжение которых - около 600 В.

Подключение электромотора: практический пример

Допустим, у вас имеется электрический двигатель асинхронного типа, рассчитанный на подключение к сети переменного тока с тремя фазами. Мощность - 0,4 кВт, тип мотора - АОЛ 22-4. Основные характеристики для подключения:

  1. Мощность - 0,4 кВт.
  2. Напряжение питания - 220 В.
  3. Ток при работе от трехфазной сети составляет 1,9 А.
  4. Соединение обмоток двигателя производится по схеме «звезда».

Теперь осталось провести расчет конденсаторов для запуска электродвигателя. Мощность мотора сравнительно небольшая, поэтому, чтобы его использовать в бытовой сети, нужно подобрать только рабочий конденсатор, в пусковом надобности нет. По формуле вычисляете емкость конденсатора: С (раб) = 66*Р (двиг) = 66*0,4 = 26,4 мкФ.

Можно использовать и более сложные формулы, значение емкости будет отличаться от этого незначительно. Но если нет подходящего по емкости конденсатора, нужно произвести соединение нескольких элементов. При параллельном соединении емкости складываются.

Обратите внимание

Теперь вы в курсе, какие конденсаторы для запуска электродвигателя лучше всего использовать. Но мощность упадет примерно на 20-30 %. Если приводится в движение простой механизм, то это не почувствуется. Частота вращения ротора останется примерно такой же, какая указана в паспорте. Учтите, что если мотор рассчитан на работу от сети 220 и 380 В, то в бытовую сеть он включается только при условии, что обмотки соединены в треугольник. Внимательно изучите бирку, если на ней имеется только обозначение схемы «звезда», то для работы в однофазной сети придется вносить изменения в конструкцию электромотора.

Появившаяся в эпоху гужевого транспорта поговорка «Какой русский не любит быстрой езды?» не потеряла актуальности и в век . Часто автовладельцы озадачиваются поисками способов, как увеличить мощность двигателя, желая снять больше «лошадок» со своего автомобиля, сделать его быстрее и динамичнее. Такие способы действительно существуют, отличаясь по сложности, объему модификаций машины и стоимости вопроса.

Следует помнить: при малом бюджете не стоит рассчитывать на значительный прирост мощности двигателя. Да, «разогнать» двигатель можно и недорого, такие решения существуют, но это значительно снизит надежность и ресурс силового агрегата.

Способы увеличения мощности современного бензинового двигателя

Добавить сил и увеличить двигателя можно несколькими путями – как модификацией самого силового агрегата, так и автомобиля в целом. Рассмотрим некоторые популярные способы увеличения мощности двигателя.

Увеличение рабочего объема двигателя

Процедуру в среде автолюбителей также называют «расточкой цилиндров». Это относительно недорогой и простой способ, как увеличить мощность бензинового двигателя. Как видно из названия, суть операции – растачивание на некоторое расстояние краев цилиндров. За счет этого добавляется рабочий объем таковых, и двигателя в целом.

Расточкой двигателя занимаются во многих автосервисах, а при наличии места и инструмента этим можно заняться и самостоятельно, инструкций по расточке в интернете представлено достаточно.

Важно: стенки цилиндров двигателя должны быть идеально гладкими, поэтому операцию должен проводить профессионал на соответствующем оборудовании. Выполнение расточки кустарным способом чревато выходом из строя блока цилиндров и дорогостоящей заменой такового.

Суть процедуры:

  • цилиндры двигателя растачиваются до определенного размера;
  • устанавливаются подходящие под этот размер поршни.

Цилиндр в процессе расточки:

Увеличение мощности двигателя при этом происходит за счет новых поршней и расточенных цилиндров: чем они больше, тем больший объем топливовоздушной смеси засасывается в цилиндры, топлива сгорает больше, растет и давление при сгорании. Как результат – с двигателя снимается увеличенная мощность.

Важно: расточке поддаются не все двигатели.

Ключевой фактор в принятии решения, растачивать или нет – материал блока цилиндров. БЦ двигателя бывают:

Чугунные.

  • Это идеальный вариант для автотюнера. Чугун прочен, что критически важно для расточки. Достаточно правильно провести увеличение размера и поставить новые поршни, и на этом тюнинг двигателя завершен. Но у чугуна есть и минусы – у него не очень хорошие параметры теплоотвода, и металл может корродировать. Кроме того, чугунный блок цилиндров очень тяжел.

Алюминиевые.

  • Этот металл часто используют в компоновке двигателей современных автомобилей. Алюминий легче, он лучше сопротивляется коррозии. Но среди специалистов БЦ из алюминия получили прозвище «одноразовых». Это связано с относительной мягкостью данного металла. Она же препятствует и расточке, не каждый автосервис возьмется за таковую на алюминиевом блоке. На заводе, чтобы внутренние поверхности цилиндров двигателя не так сильно изнашивались, их покрывают специальным защитным слоем, который при расточке, разумеется, удаляется. Повторное его нанесение может стоить очень дорого, поэтому для тех двигателей, которые все же растачивают, придумали обходной путь – гильзовку, или установку в расширенный цилиндр специальных защитных гильз (обычно чугунных).

Увеличение степени сжатия

Способ частично пересекается с предыдущим. позволит повысить крутящий момент и мощность двигателя, сделав последний, кроме того, несколько экономичнее. Правда, за это придется расплатиться необходимостью перехода на топливо с повышенным октановым числом.

Можно двумя путями:

  • растачиванием цилиндров и установкой других поршней;
  • установка новой, более тонкой прокладки ГБЦ.

Первый способ проще, поскольку не требует тонкой регулировки других деталей двигателя, что придется сделать в случае с заменой прокладки ГБЦ. На практике их нередко сочетают.

Схематически этот метод можно отобразить рисунком:


Как видно, увеличение цилиндров и поршней, вместе с уменьшением прокладки, способно дать большую степень сжатия двигателя.

Важно: не стоит путать степень сжатия и компрессию двигателя, это разные параметры.

Тюнинг впускной системы

В двигатель попадает не «чистый» бензин, а топливовоздушная смесь: воздух необходим для воспламенения. За поставку воздуха отвечает впускная система, модификация которой способна дать прирост к мощности двигателя.

Суть модификаций – минимизация сопротивления потоку воздуха на пути к цилиндрам двигателя. Такого результата можно добиться несколькими способами.

Установка воздушного фильтра нулевого сопротивления.

Такой фильтр, или «нулевик», обладает минимальным сопротивлением воздуху.

«Нулевой» воздухофильтр:


Стандартный элемент воздушного фильтра делается из плотного пористого материала, создающего существенное сопротивление. То есть конструктив этой детали сам по себе не позволяет доставлять к двигателю больше воздуха. Чтобы обойти это ограничение, применяют специальные фильтры из тонких, облегченных материалов.

Важно: установкой одного только фильтра воздуха нулевого сопротивления сколь-либо значимого увеличения мощности воздушного двигателя добиться не удастся, операцию стоит проделывать только в рамках комплексной модернизации двигателя.

Обязательно параллельно с фильтром устанавливать дроссельную заслонку с увеличенным диаметром.

Монтаж ресивера или замена его на оптимизированный.

Задача ресивера – сглаживать воздушные пульсации потока, поступающего в двигатель. У него укороченные патрубки и значительный внутренний объем, установка детали позволяет дать ощутимый прирост мощности, особенно при комплексном апгрейде двигателя.


На разных конфигурациях ресиверов можно добиться увеличения «лошадей» на высоких оборотах, или крутящего момента двигателя на низких (с небольшим снижением общей тяги двигателя). Существуют устройства впуска с изменяемой геометрией, выставляющие оптимальную конфигурацию по сведениям датчиков оборотов и положения дроссельной заслонки. Но такие решения достаточно дороги.

Снятие впускного коллектора.

В погоне за мощностью некоторые автовладельцы идут даже на такой радикальный шаг, как удаление коллектора впуска и замена его на т.н., «дудки», подогнанные под . Это дает возможность:

  • значительно увеличить объем приходящего в двигатель воздуха;
  • снизить частоту холостых оборотов;
  • сделать работу стабильнее на низких и средних оборотах.

Хорошо заметны улучшения в движении на высоких оборотах, особенно когда в рамках тюнинга двигателя было установлено несколько дроссельных заслонок (так машина гораздо чётче реагирует на работу педалью акселератора). Но эти манипуляции приведут к ощутимому росту потребления топлива и снизят ресурс двигателя.

Установка турбины

Такая операция показывает значительный прирост мощности на не-турбированных атмосферных двигателях (могут форсироваться на величину до 200% от исходной мощности). Турбина нагнетает воздух в систему под давлением, что особенно эффективно в комплексе с другими тюнинговыми операциями. Если же автомобиль уже оснащен турбинным двигателем, турбина меняется на более мощную. Чтобы увеличить мощность атмосферного двигателя турбиной, потребуется, кроме установки самой детали, модифицировать смазочную систему, охлаждение двигателя, внести настройки в ЭБУ двигателя.


Часто увеличение мощности атмосферного двигателя турбиной совмещают с установкой интеркулера двигателя – устройства, дополнительно охлаждающего воздух. Идея в том, что холодный воздух тяжелее и плотнее, в нем больше кислорода, значит, он обеспечит более эффективную работу двигателя.

Комплект охлаждения двигателя:


Тюнинг выпуска

Когда у двигателя растет мощность и число лошадиных сил, увеличивается и выброс выхлопных газов. Штатные выпускные системы могут не справиться с возросшими обязанностями, и в системе выпуска возникнет избыточное сопротивление. Это, в свою очередь, спровоцирует различные проблемы двигателя, например, ухудшится наполнение цилиндров: отработанные газы не успевают выйти в атмосферу.

Сопротивление зависит от диаметра и длины выхлопного коллектора: чем больше первый и меньше последняя, тем ниже сопротивление и эффективнее работа выхлопа. Так, для полуторалитрового двигателя, допускающего работу на оборотах более 8 тысяч, оптимальный диаметр трубы – 50 миллиметров, при длине в 3.5 метра.


Иногда для снятия большей мощности с двигателя, особенно на гоночных авто, ставят прямоточный выхлоп, который создает минимальное сопротивление отработанным газам. Минус такого решения – повышенная шумность на низких частотах, поскольку таковые не поглощаются глушителем.

Чип-тюнинг

Форсировать современный двигатель можно и программными методами. Чип-тюнинг – модификация параметров программы двигателя с целью получения требуемых результатов. Его применяют и как самостоятельный способ форсажа двигателя, и как часть комплексных мероприятий по тюнингу.

Процедура чип-тюнинга двигателя:


Автопроизводители «зашивают» в ЭБУ двигателя определенный набор параметров и директив, часто различающихся даже на одной модели автомобиля в зависимости от региона продаж. Так, чаще всего вносятся поправки в угол опережения зажигания, чтобы уменьшить нагрузку на трансмиссию и добиться других целей. В результате сгорание топлива может стать неэффективным, двигатель «задумывается» при разгоне, наблюдаются провалы мощности и высокий расход дорогостоящего топлива.

Еще один важный нюанс – некоторые автоконцерны могут сознательно программно дефорсировать двигатель для снижения цены и достижения иных технических или маркетинговых целей, хотя технически двигатель сохраняет способность выдать больше «лошадок».

Правильный чип-тюнинг позволяет устранить эти недочеты (включая дефорсирование двигателя), сделать машину быстрее, динамичнее, мощнее и экономичнее. Плюс такой «электронной» модернизации – хорошие результаты на фоне отсутствия вмешательства в аппаратную часть двигателя, что может помочь сохранить гарантию на мотор (хотя многие дилерские сервис-центры отказывают в гарантийном обслуживании, если обнаруживают факт чип-тюнинга).

Менять прошивку ЭБУ понадобится и при изменении технической конфигурации двигателя, чтобы управляющая программа корректно работала с новыми деталями, и двигатель выдавал нужные результаты. «Отдельный» чип-тюнинг показывает очень хорошие результаты на спортивных автомобилях и форсированных «с завода» ТС, где изначально стоят усиленные детали. На обычном слабосильном двигателе чип-тюнинг без масштабных вмешательств в техническую часть не покажет высоких результатов.

Важно: прошивка «мозга» машины – ответственная процедура, и ее должен проводить опытный и знающий человек. В противном случае есть возможность нанести автомобилю непоправимый вред.

Установка кованых поршней и облегченного маховика

Облегченный маховик:


Данные модификации часто включают в список манипуляций для комплексного тюнинга двигателя с целью повышения мощности. Легкий маховик проще раскрутить, двигатель тратит на это меньше сил, а максимальные обороты двигателя достигаются гораздо быстрее. Одной этой операцией можно получить до 4 процентов прироста мощности двигателя.

Поменять маховик двигателя можно и в сервисе, и самостоятельно, стоимость запчасти, как правило, не очень велика.

Кованые поршни двигателя также легче, если сравнивать с обычными. Как следствие, меньше энергозатрат на «хождение» их в цилиндрах, и больше снимаемая с двигателя мощность. Эта модификация, вместе с легким маховиком, тюнингом впуска-выпуска и другими изменениями двигателя, часто ставится любителями высоких скоростей. Кроме всего прочего, кованые поршни способны выдерживать большие температуры и медленнее изнашиваются.

Установка спортивного распределительного вала

По сравнению с обычным, спортивный распредвал двигателя обеспечивает большую высоту подъема клапанов, оптимизируя подачу в двигатель горючей смеси. Существует три вида валов:

  • низовые, добавляющие машине мощности на малых оборотах;
  • универсальные;
  • верховые, чья задача – прибавить «лошадок» на высоких оборотах.

Спортивный распределительный вал:


Тюнинг дизельных двигателей

В дизельных моторах топливо сгорает иначе, чем в бензиновых. Воспламенение топливной смеси происходит за счет сильного сжатия и дальнейшей . Это, и ряд других особенностей дизельных двигателей, делает их малопригодными к тюнингу. Операции по доработке таких двигателей весьма сложны, а стоимость их намного выше. Кроме того, большинство классических способов получения увеличенной мощности на дизеле не сработают (или будут стоить несравнимо дороже).

Особенности увеличения мощности дизельного двигателя:

  • двигатели на дизтопливе сегодня изначально оснащаются турбинами, можно поставить более мощную;
  • дорабатывать ГБЦ и впуск видится нецелесообразным, и дизельный двигатель тюнингуют в контексте топливоподачи. Так, популярен монтаж системы Common Rail, с апгрейдом блоков контроля подачи топлива, управления системой впрыска, и оснащением двигателя усовершенствованными форсунками. Это надежный, но дорогой вид тюнинга;
  • чип-тюнинг допустим на «дизелях» в той же мере, что и на бензиновых двигателях.

Карбюраторные двигатели

На карбюраторных моторах можно, помимо тюнинга впуска/выпуска, газораспределительной системы двигателя и т.д., поменять сам карбюратор на новый, более производительный. Так, автолюбители устанавливают карбюраторы от других машин, с увеличенными смесительными камерами и заслонками. Несколько увеличить мощность карбюраторного двигателя можно и тонкой регулировкой штатного карбюратора.

Облегчение машины

Улучшить динамику и скоростные характеристики можно и обходными путями, без вмешательства в двигатель. Законы физики просты: чем легче объект, тем проще его разогнать. Соответственно, тот же двигатель лучше разгонит автомобиль со сниженным весом.

Путей снижения массы автомобиля несколько. Во-первых, стоит банально избавиться от ненужного хлама в багажнике, которого накапливается иногда несколько десятков килограмм. Второй шаг, на который идут некоторые автомобилисты – выкидывание «запаски», так поступают те, для кого скоростные характеристики важнее возможного возникновения нештатных ситуаций. В ряде случаев решаются даже на такой шаг, как снятие ненужных сидений. Это низкобюджетные и низкотехнологичные решения.

Второй шаг – замена тяжелых деталей на более легкие:

  • окна из стекла – на акрил или пластик;
  • установка облегченных колесных дисков;
  • замена тормозов на дисковые;
  • замена некоторых элементов капота на углепластик и другие альтернативные материалы;
  • смена металлического топливного бака на пластиковый.

Такие решения позволяют машине «сбросить» до сотни килограмм, что положительно сказывается на динамике.

«Багги» – облегченный автомобиль:


Присадки

В автомобильной среде встречаются рекомендации добавлять в топливо или масло специальные присадки, должные добавить мощности. Некоторые из таких добавок действительно работают, но следует помнить, что владелец заливает их в бак/картер на свой страх и риск: неизвестно, как поведет себя двигатель при долгой работе с посторонними химическими средствами в топливе и технических жидкостях. Есть риск «убить» двигатель с последующим дорогостоящим ремонтом. Разумнее использовать качественное топливо и моторное масло, они сами по себе способны дать некоторый прирост мощности за счет отличных смазочных свойств масла и характеристик горючего.

Важно помнить: форсирование двигателя, особенно проведенное непрофессионально, способно существенно снизить ресурс силового агрегата, кроме того, автовладелец лишается заводской гарантии на двигатель.

Большинство насосов приводятся в действие с помощью асинхронных электродвигателей, это означает, что двигатели вносят вклад в общую эффективность насосной системы.

Данная статья посвящена исследованию ключевых аспектов эффективности электродвигателя, которые находятся под контролем пользователя. 2/3 всей вырабатываемой электроэнергии, потребляются электродвигателями, которые используются в различном оборудовании на промышленных площадках всего мира.

Электродвигатели развиваются на протяжении последних 150 лет. Не смотря на то, что существует большой выбор из различных конструкций двигателей (например синхронные, асинхронные или постоянного тока), наиболее используемым в промышленности на сегодняшний день является асинхронный электродвигатель переменного тока, т.к. является более надежным. Также асинхронный электродвигатель предпочтительнее при использовании частотного преобразователя. Достаточно высокая эффективность в сочетании с простотой изготовления, высокой надежностью и низкой ценой делает его самым широко-применяемым типом двигателя по всему миру.

Рисунок 1: Асинхронный электродвигатель с короткозамкнутым ротором

На рисунке 1 показана обычная компоновка асинхронного электродвигателя с тремя обмотками статора, которые расположены вокруг сердечника. Обмотка ротора состоит из медных или алюминиевых стержней, торцы которых накоротко замкнуты кольцами. Кольца изолированы от ротора. В подшипниковом узле, как правило, используются шарикоподшипники с консистентной смазкой, за исключением очень больших двигателей. Смазка масляным туманом может значительно увеличить срок службы подшипников. Во всех асинхронных электродвигателях используется трехфазный ток, за исключением самых маленьких промышленных процессов (ниже 2 л.с.). Для запуска фазных двигателей необходимы другие средства, такие как щетки или конденсаторный пуск (использование конденсатора во время пуска).

Проблема эффективности двигателя

При использовании электродвигателя в качестве привода насоса потери энергии и падение давления в результате неэффективности насоса обычно гораздо больше, чем потери энергии связанные с неэффективностью электродвигателя, но они не являются незначительными. Оптимизация эффективности электродвигателя насоса может обеспечить реальную экономию стоимости рабочего цикла на протяжении всего срока службы насоса/электродвигателя. Ключевыми факторами, которые влияют на эффективность асинхронного двигателя являются:

  • относительная нагрузка двигателя (негабаритные двигатели находящиеся под нагрузкой)
  • скорость вращения (число полюсов)
  • размер двигателя (номинальная мощность)
  • класс двигателя: обычный КПД в сравнении с энергоэффективностью в с равнении с высоким КПД
Эффективность электродвигателя при частичной загрузке

Как показано на рисунке 2, эффективность асинхронного электродвигателя изменяется вместе с
относительной нагрузкой на электродвигатель по сравнению с номинальной характеристикой. Вплоть до нагрузки в 50% эффективность большинства электродвигателей остается линейной и для некоторых электродвигателей достигает пика у отметки 75%. Электродвигатели могут работать при нагрузке меньше 50% только в течение короткого промежутка времени и не могут эксплуатироваться при нагрузках меньше 20% от номинальных. Таким образом, когда отрегулированные рабочие колеса или насосы возвращаются к своим кривым "напор-подача", необходимо оценить воздействие относительной нагрузки на электродвигатель.


Рисунок 2: Эффективность электродвигателя для 100-сильных моторов - Обычные кривые характеристик при нормальном диапазоне нагрузок электродвигателя

Скорость вращения

На рисунке 2 также показано влияние скорости вращения на максимально-достижимую эффективность. 4-х полюсный электродвигатель при номинальных 1800 об/мин выходит на самый высокий КДП, а 2-х полюсный при номинальных 3600 об/мин дает низкую эффективность. Таким образом, хотя насосы с номинальной частотой вращения 3600 об/мин могут быть более эффективными (и иметь низкую закупочную стоимость), чем насосы со скоростью вращения 1800 об/мин, электродвигатели последних могут быть более эффективными, плюс эти насосы, как правило, имеют более низкий NPSHR и энергию всасывания, не говоря уже о более длительном сроке службы. Также следует отметить, что номинальная мощность электродвигателя влияет на его эффективность, большие электродвигатели имеют большую эффективность, чем малые.

Скорость вращения асинхронного электродвигател я

Синхронная скорость вращения асинхронного электродвигателя рассчитывается по следующей формуле:
n = 120*f/p
где:
n = скорость вращения в об/мин
f = частота питающей сети (Гц)
p = количество полюсов (min = 2)

Для регулирования частоты вращения электродвигателя без использования внешних механических устройств необходимо регулировать напряжение и частоту подаваемого тока. Некоторые электродвигатели могут быть изготовлены с несколькими обмотками (количество полюсов) для достижения двух или более различных скоростей вращения.

Асинхронные электродвигатели вращаются со скоростью, которая меньше скорости вращения магнитного поля (на 1-3% при полной нагрузке). Разница между фактической и синхронной частотой вращения называется скольжением. Для новых более энергоэффективных электродвигателей скольжение имеет тенденцию уменьшаться в отличие от старых электродвигателей с обычным КПД. Это означает, что при заданной нагрузке энергоэффективные электродвигатели работают немного быстрее.


Рисунок 3. Эффективность при полной и частичной загрузке двигателя с низким и высоким КПД

Электродвигатели с высоким КПД

На рисунке 3 изображен пример возможного повышения эффективности, когда старый электродвигатель с обычной эффективностью заменяется новым, имеющим более высокий КПД. Как упоминалось ранее, электродвигатели с высоким КПД работают с меньшим скольжением, что дает некоторое увеличение скорости вращения, а следовательно напор насоса и производительность становятся несколько больше.

Однако, использование электродвигателей с высоким КПД в некоторых (с изменением подачи) процессах будет не оправданно, из-за большей скорости вращения (и напора насоса), до тех пор пока существующие электродвигатели по-прежнему слабо загружены (работающие с низким КПД). Т.к. входная мощность на валу насоса пропорциональна скорости в кубе, простая замена старого электродвигателя новым с высоким КПД не обязательно приведет к снижению потребления энергии.

С другой стороны, если немного большая подача и напор для насоса - это хорошо, замена старого
электродвигателя с обычным КПД на новый с высоким КПД может быть оправдана.

Коэффициент мощности электродвигателя

Другая проблема, которая входит в игру с характеристиками асинхронного электродвигателя (которая имеет косвенное влияние на энергопотребление) называется "Коэффициент Мощности ". Некоторые
коммунальные предприятия обязывают клиентов платить дополнительные сборы за низкие значения
коэффициентов мощности. Потери в сети происходят за счет того, что при меньшем коэффициенте
мощности требуется большее количество тока, что приводит к серьезным потерям энергии. Как и КПД,
коэффициент мощности электродвигателя также снижается с уменьшением нагрузки на него практически по линейному закону приблизительно до 50% нагрузки.

Определение коэффициента мощности:

Фазовый сдвиг (задержка) синусоидальной волны тока от синусоиды напряжения, который выбарабывает меньшее количество полезной мощности.
Сдвиг, вызванный необходимым током намагничивания двигателя
PF = Pi/KVA
Где:
KVA = VxIx(3) 0.5 /1,000

Нижняя формула показывает, как коэффициент мощности влияет на входную мощность трехфазного
электродвигателя (кВт). Обратите внимание, что чем ниже коэффициент мощности (больший сдвиг фазы ток-напряжение VA), тем меньше входная мощность при данном входном токе и напряжении.
Где:
Pi = VxIxPF(3) 0.5 /1,000

Pi = трехфазный вход кВт
V = среднеквадратичное напряжение (среднее от 3 фаз)
I = среднеквадратичное значение силы тока в амперах (берется от 3 фаз)
PF = коэффициент мощности в виде дроби

Хотя коэффициент мощности не влияет напрямую на КПД электродвигателя, он оказывает влияние на потери в сети, как это упоминалось выше. Однако, есть способы увеличения PF (коэффициента мощности), а именно:

  • покупка электродвигателей с изначально высоким PF
  • не покупайте слишком большие электродвигатели (коэффициент мощности падает вместе с уменьшением
  • нагрузки на электродвигатель)
  • установка компенсирующих конденсаторов параллельно с обмотками электродвигателя
  • увеличить полную загрузку коэффициента мощности до 95% (Max)
  • преобразование в привод с частотным регулированием
Пусковые конденсаторы электродвигателей являются одним из наиболее поппулярных способов увеличения коэффициента мощности и имеют следующий список преимуществ:
  • увеличение PF
  • меньшение реактивного тока от электрооборудования через кабели и пускатели электродвигателейменьшее тепловыделение и потери мощности кВт
  • По мере уменьшения нагрузки на электродвигатель растет возможность экономии, а PF
  • падает ниже 60%-70%. (возможная экономия 10%)
  • Уменьшение сборов за коэффициент мощности
  • Увеличение общей производительности системы
  • Интеллектуальная система управления электродвигателем
  • Частотно-регулируемый электропривод
Более высокое напряжение
Другим способом повышения КПД электродвигателя является повышение рабочего напряжения. Чем выше напряжение, тем ниже ток и, тем самым будут ниже потери в сети. Однако, высокое напряжение приведет к увеличению цены частотно-регулируемого привода и сделает работу более опасной.

Выводы
Таким образом, когда вы пытаетесь сократить энергопотребление насосных систем не забывайте о
КДП электродвигателя и факторах, перечисленных выше, которые на него влияют.

Зачастую насосы работают при помощи асинхронных двигателей, которые обеспечивают им эффективный результат.

Первая разработка электродвигателей появилась еще 150 лет тому назад. Сегодня на рынке можно столкнуться с широким ассортиментом данных агрегатов. К ним относятся синхронные, постоянного тока или асинхронные электродвигатели. Но большой востребованностью пользуется последний вариант электрического двигателя. Это объясняется его повышенной надежностью.

Электродвигатель асинхронныйчасто применяется с частотным преобразователем. Большая эффективность, простота изготовления, повышенная надежность, приемлемая стоимость – всеми этими преимуществами и обладает данный агрегат.

Трудности с эффективностью двигателя


В процессе использования электродвигателя возможно уменьшение давления и потеря энергии из-за неэффективности насосной станции. Если оптимизировать эффективность двигателя, то это приведет к обеспечению значительной экономии стоимости рабочего цикла в течение всего периода эксплуатации насоса.

Существует ряд показателей, которые оказывают существенное влияние на успешный результат работы асинхронного электродвигателя:

Число полюсов.

Номинальная мощность.

Класс электродвигателя.


Скорость вращения электродвигателя


Для того чтобы регулировать частоту вращения данного устройства без использования приборов механического типа следует контролировать уровень напряжения и частоту электротока. Некоторая часть электродвигателей изготавливается с обмотками, подразумевающими количество полюсов. Это необходимо для того, чтобы достигнуть нескольких скоростей вращения.

Разница между синхронным и фактическим вращением относится к скольжению. Данный показатель в новых эффективных электродвигателях склонен снижаться, чего трудно сказать про старые модели двигателей, имеющие обычный уровень КПД.


Способы увеличения коэффициента мощности


Коэффициент мощности не может повлиять на КПД двигателя, но говорит о том, что произошла потеря энергии. Сегодня существуют способы, помогающие увеличить этот коэффициент:

Приобрести электродвигатель с высоким показателем PF;

Не рассматривать для покупки устройства с большими габаритами;

Проводить установку обмоток электродвигателя вместе с компенсирующими конденсаторами;

Увеличивать загрузку коэффициентов до максимального предела;

Преобразовывать частотное регулирование.

Если вы выберете пусковые конденсаторы для увеличения коэффициента мощности электродвигателя, то необходимо помнить об их преимуществах:

Способны увеличить PF;

Уменьшить реактивный ток;

Снижение затрат на коэффициент мощности;

Повышение производительности системы.

Помимо перечисленных выше способов, которые используются для повышения коэффициента мощности двигателя, можно также увеличить рабочее напряжение. Но такое действие повлияет на повышение стоимости привода и на рабочий процесс, который станет опасным.

Пытаясь уменьшить энергопотребление насосов, не стоит забывать о показателях КПД и иных факторах, влияющих на него.


Дата: 01.10.14 | 19:55:46


Copyright © 2024 Menzernarus - Автомобильный портал.