Генератор видеосигнала на микроконтроллере измерения. Dendy - генератор испытательных телевизионных сигналов

Dendy - генератор испытательных телевизионных сигналов. Новая версия

Самодельный картридж для видеоприставки "Dendy" , превращающий ее в генератор испытательных телевизионных сигналов (ГИТС), заинтересовал наших читателей. Благодаря их отзывам, автору конструкции и программы С. Рюмику из г. Чернигова был присужден поощрительный приз конкурса "Лучшая публикация 2001 г.".Сегодня мы представляем ГИТС-2 - усовершенствованный вариант картриджа.

По сравнению с первой версией предлагаемого прибора область его применения не изменилась - настройка и регулировка цветных (работающих в системе PAL) и черно-белых телевизоров, оценка качества кинескопа при покупке телевизора, формирование испытательных таблиц для кабельного телевидения. Однако число испытательных изображений, создаваемых ГИТС-2, увеличено с 81 до 466 (с учетом всех цветовых вариантов), а звуковых тест-сигналов - с двух до четырех. По некоторым характеристикам ГИТС-2 превосходит известные генераторы "Электроника ГИС 02Т" и "Ласпи ТТ-03".

Так как все функции генератора испытательных сигналов реализованы программным образом, при доработке необходимо было изменить только программу. Аппаратная часть прибора - собственно плата картриджа с панелями для двух микросхем РПЗУ могла бы оставаться точно такой, как в исходном варианте. Тем не менее и она подверглась небольшому усовершенствованию, позволяющему работать даже с частично неисправными приставками "Dendy".

Схема платы ГИТС-2, приведенная на рис. 1, отличается от первоначальной дополнительной перемычкой ХТ3, служащей для переключения экранных страниц видеопроцессора "Dendy".

(нажмите для увеличения)

Если в вашей приставке одна из видеостраниц неисправна (на изображении видны лишние линии или квадраты), можно перейти на другую, переставив перемычку и нажав кнопку SELECT джойстика. В положении "1" работает первая, в положении "2" - вторая страница видеопамяти.

Рисунки печатных проводников и расположение элементов на плате картриджа показаны на рис. 2.

(нажмите для увеличения)

Форма платы выбрана исходя из удобства ее установки в стандартный для "Dendy" корпус картриджа. Более узкую и без боковых вырезов плату не удастся в нем зафиксировать. Поэтому не стоит экономить материал, уменьшая ширину платы.

Корпус берут от пришедшего в негодность игрового картриджа. Иногда приходится его немного доработать, например, укоротить имеющиеся внутри пластмассовые штыри.

При разработке программы ГИТС-2 автор стремился реализовать максимальное число тестов, заняв в ПЗУ не более 2 Кбайт. В частности, изображение испытательной таблицы хранится упакованным по оригинальному алгоритму. Коэффициент сжатия - 50,2 % (с 960 до 482 байт). При этом подпрограмма-распаковщик данных заняла всего 57 байт. Для хранения тех же данных, упакованных методом ZIP, потребовалось бы всего 435 байт, но длина их распаковщика во много раз больше.

Коды, которые необходимо занести в РПЗУ DS1 и DS2 информационной емкостью по 2 Кбайт (микросхемы КР573РФ5 или их аналоги), приведены соответственно в табл. 1 и 2.

(нажмите для увеличения)

(нажмите для увеличения)

Свойства ГИТС-2 (как и ГИТС первой версии) не зависят от типа и емкости примененных микросхем РПЗУ, поэтому последние можно комбинировать на плате в различных сочетаниях, не забывая лишь установить в нужные положения перемычки ХТ1 и ХТ2. Если заменять микросхемы в процессе эксплуатации картриджа не планируется, можно соединить соответствующие контактные площадки на плате обычными проводами вместо перемычек-джамперов.

На новой плате (при перемычке ХТЗ в положении "2") будут работать и микросхемы, запрограммированные в соответствии с . Но применять их нужно в комплекте: обе "новые" или обе "старые". Естественно, в последнем случае ГИТС будет обладать лишь свойствами, о которых было рассказано в первоисточнике.

Если имеется готовая плата старого варианта ГИТС, чтобы воспользоваться всеми описанными ниже тестами, достаточно установить в ее панели микросхемы РПЗУ, запрограммированные по-новому.

Желающим внести в программу свои дополнения и улучшения, поможет , где подробно рассказано о методике разработки программ для "Dendy"

ОПИСАНИЕ ТЕСТОВ

После установки картриджа ГИТС-2 в "Dendy" и подачи питания на экране телевизора должна появиться испытательная таблица (верхний рисунок на 1-й стр. обложки) и прозвучать трель. Если изображение отсутствует, но звук имеется, попробуйте переставить перемычку ХТЗ на плате картриджа в другое положение, нажмите кнопку SELECT джойстика. Эта операция позволяет перейти с возможно неисправной видеостраницы на исправную. Если нет и звука, вероятно, отказали некоторые из используемых программой ячеек основного ОЗУ игровой приставки и дальнейшая работа невозможна.

Из-за особенностей видеосистемы "Dendy" сформировать на экране телевизора точные квадраты затруднительно (не удается уложиться в заданный объем ПЗУ). Поэтому во всех тестовых изображениях они выглядят прямоугольниками с соотношением сторон 4:5. Однако центральная окружность испытательной таблицы имеет правильную форму, что дает возможность оценить геометрические искажения растра и отрегулировать его размеры. Кроме того, таблица позволяет отцентрировать и сфокусировать изображения по пяти реперным знакам в центре и по углам экрана, проверить четкость по горизонтали и вертикали (200...250 линий по мелкой сетке). Имеются участки с шахматным полем, цветовой гаммой, диагональными линиями. При нажатии кнопок ВВЕРХ, ВНИЗ любого из джойстиков изображение инвертируется (второй сверху рисунок на 1-й стр. обложки), в центре, вверху и внизу экрана появляются надписи мелким шрифтом.

К следующим 11-ти испытательным изображениям переходят с помощью кнопок ВЛЕВО и ВПРАВО. Каждое имеет по четыре варианта, переключаемых кнопками ВВЕРХ и ВНИЗ. Варианты, в свою очередь, имеют от двух до 24-х разновидностей: кнопкой А изменяют цвет изображения, кнопкой В инвертируют его или включают/выключают наложенную на основное изображение мелкую сетку. Кнопкой START переключают звуковые тест-сигналы. Переход от одного теста к другому сопровождается звуком "бип", а начало нового цикла их смены - трелью.

Вертикальные цветные полосы (рис. 3, а) - восемь полос одинаковой ширины в следующем порядке (слева направо): белая, желтая, голубая, зеленая, пурпурная, красная, синяя, черная. Позволяют проверить правильность матрицирования, настроить контуры коррекции предыскажений, оценить цветовую насыщенность в смежных строках. Оттенки формируемых цветов зависят от особенностей видеопроцессоров "Dendy" разных моделей и могут немного различаться. Варианты: замена основных цветов дополнительными, отключение цвета (серая шкала, третий сверху рисунок на 1-й стр. обложки). Разновидности: буква С на синей полосе для удобства ее идентификации.

Горизонтальные цветные полосы (рис. 3, б, в) - восемь полос, аналогичных вертикальным, но самая нижняя - вдвое меньшей высоты.

Равномерное серое поле. Позволяет проверить и отрегулировать статический баланс белого, чистоту цвета. Варианты: четыре градации яркости. Разновидности: циклическая с периодом 2 с инверсия изображения, что позволяет проверять качество стабилизации размера изображения и устойчивость синхронизации кадровой и строчной разверток. При нажатии и удержании кнопки В частота "мигания" увеличивается вчетверо.

Равномерное красное поле. Служит для проверки чистоты цвета, выявления дефектов маски кинескопа (на изображении не должно быть белых точек). Варианты: четыре градации насыщенности. Разновидности: "мигание" с периодом 1 или 2 с.

Равномерное зеленое поле аналогично красному.

Равномерное синее поле аналогично красному.

Шахматное поле из черно-белых прямоугольников (16 столбцов, 15 строк) позволяет оценить линейность разверток, геометрические искажения растра, проверить отсутствие цветных окантовок. Варианты: инверсия изображения, увеличенные вдвое размеры прямоугольников (нижний рисунок на 1-й стр. обложки). Разновидности: наложенная на изображение мелкая сетка, замена белого одним из 12-ти возможных цветов (рис. 3, г).

Монохромные полосы ("матроска", рис. 3, д) служат для оценки линейности развертки и равномерности окраски протяженных участков экрана. Варианты: вертикальные или горизонтальные полосы, увеличенная вдвое ширина полос, инверсия изображения. Разновидности: наложенная на изображение мелкая сетка, замена белого одним из 12-ти возможных цветов (рис. 3, е).

Точечное поле (рис. 3, ж). Белые точки (15x16) на черном фоне с маркером в центре служат для проверки фокусировки и астигматизма электронного луча по всей площади экрана, а также статического и динамического сведения лучей основных цветов. Варианты: уменьшенный вдвое или увеличенный вдвое и вчетверо шаг точек (можно выбрать оптимальный в зависимости от размера экрана телевизора). Разновидности: инверсия изображения, замена белого одним из 12-ти возможных цветов (рис. 3, з).

Сетчатое поле из 15х 16 тонких белых линий на черном фоне служит для регулировки сведения красного, зеленого и синего лучей, проверки фокусировки. Варианты: уменьшенный вдвое или увеличенный вдвое и вчетверо шаг сетки. Разновидности: инверсия изображения, замена белого одним из 12-ти возможных цветов (рис. 3, и, к).

Звуковые тест-сигналы служат для проверки канала звука телевизора. Предусмотрены следующие сигналы, переключаемые циклически кнопкой START: прямоугольные импульсы скважностью 2 ("меандр") частотой 500 Гц, пилообразные импульсы частотой 6600 Гц, прямоугольные импульсы скважностью 4 частотой 6600 Гц, "сирена" - "меандр" линейно изменяющейся частоты (от 27 до 12500 Гц в течение 9 с).

Собранный мной прибор предназначен для налаживания и настройки телевизоров и мониторов. С помощью данного генератора сигналов можно формировать различные испытательные сигналы, в том числе и цветные с хорошей синхронизацией. Прибор состоит из двух функциональных плат, генератора и приставки цветного изображения. Внешний вид генератора сигналов для настройки телевизоров показан на рисунке ниже.

Генератор подключают к антенному входу телевизора, работающем на первом или втором телевизионном канале. Получая на экране различные испытательные изображения, можно свести лучи цветного кинескопа, добиться чистоты цвета и баланса белого, откорректировать геометрические искажения, размеры и центровку растра, отрегулировать фокусировку и т.д. Прибор формирует чёрное и белое поле, шесть и двенадцать вертикальных полос с градациями яркости, вертикальные и горизонтальные чередующиеся полосы и линии, а также шахматное и сетчатое поля и много других комбинаций, в том числе возможна инверсия сигнала. С целью упрощения, генератор формирует построчный растр с числом строк 315. Частота кадров равна 49,6 Гц. Принципиальная схема генератора показана на рисунке. Он состоит из кварцевого генератора образцовой частоты (DD5.1, DD5.2), формирователя телевизионных сигналов (DD1 – DD4, DD5.3, DD5.4, DD6, DD7), устройства сложения (VD5 – VD7, R17 – R19) и генератора РЧ (VT1). Кварцевый генератор вырабатывает импульсы с частотой следования 4 МГц.


В результате её деления на выходе 15 счётчика VD2 на каждый 16-й входной импульс формируется импульс 0.1 мкс, образуя сигналы частотой 250 Гц. создаёт на экране вертикальные линии. Он проходит на переключатель SB5. Частоту повторения этой последовательности счётчик D1 делит до строчной (15625 Гц), на выходе 1 получаем сигнал вертикальных полос, поступающий на переключатель SB4.1. Резисторы R2 - R5 преобразуют сигналы двоичного кода на выходах 1, 2, 3, 4 счетчика DD1 в ступенчато изменяющееся напряжение градаций яркости. Строчные гасящие и синхронизирующие импульсы с периодом следования 64 мкс. формируются триггерами микросхемы D3. До появления импульса на входе R, триггер DD3.1 находится в единичном состоянии. Поступающий на вход R импульс, устанавливает его в нулевое состояние, что соответствует началу формирования строчного гасящего импульса. Триггер возвращается в исходное состояние под воздействием на его вход С второго положительного перепада, возникающего на выходе 1 счётчика DD1. На инверсном выходе триггера получаются положительные гасящие импульсы длительностью 12 мкс. Триггер DD3.2 формирует строчные синхроимпульсы длительностью 4 мкс, фронт которых сдвинут на 2 мкс относительно фронта гасящих. Обеспечивают это элементы VD1 и R6, выполняющие операцию ИЛИ и управляющие входом D. В этом же триггере в строчный синхросигнал вводятся кадровые синхроимпульсы, поступающие на вход R, в результате чего на его выходе формируется смесь синхроимпульсов. На микросхемах DD4, DD6 и элементах DD5.3, DD5.4 выполнен формирователь кадровых синхроимпульсов и сигналов горизонтальных линий и полос. Формирование сигнала горизонтальных полос происходит при прохождении импульсов, снимаемых с выхода S1 счётчика DD4, через триггер DD6. При этом частота их следования уменьшается вдвое, а скважность становится равной 2.


На элементах DD7.1, DD7.2, R14, VD3 выполнено устройство, в котором из двух исходных сигналов, поступающих на вход элемента DD7.1 формируется третий. Для получения шахматного или сетчатого поля одновременно нажимают на кнопки SB4, SB6 (вертикальные и горизонтальные полосы). Если нажать кнопку SB8, то получим точечное поле. Различные комбинации нажатых кнопок SB1 – SB9 позволяют получить множество других изображений на экране. Полный видеосигнал положительной полярности образуется в устройстве сложения на элементах VD5 – VD7, R17 – R19. При одновременном нажатии кнопок SB3, SB4 и SB6 в устройстве формируется сигнал шахматного поля, квадраты которого заполнены полосами градаций яркости. Видеосигнал снимается с резистора R19, поступает с конденсатора С3 на генератор РЧ, где происходит модуляция по коллектору транзистора VT1. Приставка к прибору собрана в том же корпусе на отдельной печатной плате. Она позволяет проверять работу цветовой синхронизации и весь тракт прохождения цветоразностных сигналов, настраивать частотные детекторы в блоках цветности. Приставка обеспечивает формирование испытательных изображений чередующихся цветных полос. В режиме проверки частотных детекторов и установки их нулей, по всему полю через строку передаются сигналы цветовых поднесущих.


Функционирование всего тракта цветоразностных сигналов контролируют по изображению на экране цветных полос. При этом включая различные испытательные сигналы самого генератора. Принципиальная схема приставки показана на рисунке. Она состоит из кварцевых генераторов частот цветовой синхронизации 3900 кГц (элементы DD4.1, DD4.2) и 4756 кГц (DD5.1, DD5.2) и цветных поднесущих 4250 кГц (DD3.1, DD3.2) и 4406 кГц (DD8.1, DD8.2), коммутаторов частот цветовой синхронизации (DD4.3, DD4.4, DD5.3, DD6) и цветовых поднесущих (DD3.3. DD8.3, DD10), сумматора (DD7, R4 – R6, R9 – R11), генератора временного интервала (DD9) и формирователей импульсов (DD1, DD2, DD3,4, DD5.4). Приставка включается кнопкой QB1. Из строчных синхроимпульсов, поступающих в приставку с генератора, триггер DD2.2 формирует импульсы полустрочной частоты. И длительностью (64 мкс) для коммутации сигналов цветовой синхронизации. С выхода триггера они воздействуют непосредственно на элемент DD5.3 и через инвертор DD1.3 на DD4.3, которые поочерёдно, через строку пропускаю сигналы частот цветовой синхронизации 4756 и 3900 кГц. После суммирования этих сигналов в элементе DD4.4 пакеты частот цветовой синхронизации приходят на элементы DD6.1 и DD6.2. Кроме того с выходов триггера DD2.2 и инвертора DD1.3 импульсы полустрочной частоты через контакты SB2.1 и SB2.2 переключают элементы DD8.3 и DD3.3 , которые также поочерёдно пропускают сигналы частот цветовых поднесущих 4406 и 4250 кГц с их генераторов на элементы DD10.1 и DD10.2. В сумматоре на элементах DD7, R4 – R6, R9 – R11 сигналы цветовой синхронизации и цветовой поднесущие складываются и через конденсатор C1 поступают в точку соединения резисторов R17, R18 и диод VD7 генератора и затем на автогенератор РЧ, иодулируя полный телевизионный сигнал. На рис.5 изображена двухсторонняя печатная плата на которой собрана приставка.


Питается генератор сигналов от источника стабилизированного напряжения, схема которого изображена на рисунке. Светодиод HL1 индицирует включение устройства. Детали. Катушка генератора L1 содержит 8 витков провода ПЭВ-2 0.23 и намотана виток к витку на каркасе диаметром 5 и длиной 15 мм с подстроечным сердечником СЦР-1. На этом же каркасе расположен виток связи L2 из того же провода. Трансформатор Т1 – любой малогабаритный, рассчитанный на ток во вторичной обмотке не менее 0.3 А при выходном напряжении 8 В. Все детали генератора сигналов смонтированы на двухсторонней печатной плате. Плата изображена с двух сторон на рисунке 4. Кварцевые резонаторы в приставке можно заменить последовательными контурами катушки которых наматывают на виток к витку проводом ПЭВ-2 0.23 на ребристых каркасах диаметром 7 мм с подстроечниками СЦР-1 (от радиоприемника Меридиан). На частоту 3900 кГц в приставке и 4мГц в генераторе катушки контуров содержат по 75 витков, емкость конденсаторов 62 пф. На частоту 4756 кГц катушка содержит 60 витков, ёмкость конденсатора 51 пф. На частоту 4250 кГц - 58 витков, конденсатор 68 пф. На частоту 4406 кГц – 48 витков, конденсатор 82 пф.


Настройка генератора сигналов. При настройке контура 4 МГц в генераторе, подключённом к телевизору, его подстроечником сначала добиваются устойчивой строчной синхронизации на экране телевизора, а затем включив кнопками SB5, SD7 сетчатое поле добиваются равенства сторон квадратов. Для настройки контуров в приставке включают в генераторе кнопку SB9 – инвертирование, а на приставке QB1 и SB1 (синие и зелёные полосы). Вращая подстроечник контура 4756 кГц добиваются устойчивого изображения цветных полос сначала бирюзового, а затем при настройке контура 3900 кГц – ярко зелёного цвета. После этого отжать кнопку SB1 и настраивают контуры на 4250 и 4406 кГц получают свечение красных и сиеих полос. Следует отметить если в телевизоре неправильно отрегулировано АРУ при подключении генератора сигналов, изображение может быть искажено. Необходимо сначала отрегулировать АРУ в телевизоре. Автор конструкции - Валерий Иванов. E-mail: [email protected]

Приветствую всех!
Уважаемые посетители сайта, хочу предложить Вам схему и печатную плату ГТИС (генератора телевизионных испытательных сигналов),который я сделал год назад по просьбе товарища.Была поставлена задача разработать печатную плату,которая должна
вмещаться в корпус "Ranitsa RP-201".(часы - радиоприемник).Т.к. я в свое
время уже собирал универсальный генератор испытательных телевизионных сигналов (версия 2.0 "Радиолюбитель" 1999г. №5 стр.5. Авторы:Chirkov & Larionov)
решил за базовый вариант использовать схему версии 3 (м/c CXA1645M-кодер PAL,
TDA8505 - кодер SECAM)
В качестве генератора - формирователя синхросигнала и сигналов испытательных изображений решил попробовать два варианта:
1.генератор тестовых сигналов -автор: Marcelo Maggi


2.малогабаритный генератор телевизионных сигналов.Автор: Александр Мусатов
(выбор необходимого испытательного сигнала осуществляется двумя клавишами)

Проверил на макетке оба варианта,остановился на втором.
Благодаря разработкам Ю.Чиркова,В.Ларионова,А.Мусатова и появился предлагаемый
генератор.Большое спасибо за их труд!
Файл печатной платы в формате Sprint Layout 3.0 и принципиальные схемы
в формате SPlan .
Самой лучшей программой для мелкосерийного "радиолюбительского" производства
печатных плат является русифицированная Sprint Layout 3.0.Нравится мне эта
программа за возможность разводки по рисунку.Сосканированные рисунки плат из
журналов и другой литературы могут быть использованы для восстановления дорожек
платы или переразводки элементов. Для этого необходимо сканировать изображение
(или использовать любой графический файл,переведя в файл *.BMP),оно будет
показано как фоновое на плате.
Программа SPlan 5.0 представляет из себя редактор принципиальных схем, она
поддерживает макросы, как встроеные,так и пользователя.Скачать программы можно
с сайта--
И если даже, вы уже работали с этими программами, рекомендуется прочитать
все разделы руссифицированых файлов помощи до конца, не исключено что вы найдете
неизвестные ранее возможности программ.С этого сайта можно скачать Sprint Layout
4.0 (русская версия)

Используя программу Sprint Layout 3.0,Вы можете изменять мой вариант разводки
печатных плат.(например,у Вас другой силовой трасформатор,диодный мостик,
корпус)
Схема и печатная плата пока так сказать для затравки.(изменен каскад на
тр-ах V5 и V6).В последующем будут выложены файлы (и доработка)
1.Генератор полного цветового телевизионного сигнала на двух микросхемах
Статья из ж. " РЭТ " №5 2003 г. автор:М.Медведев (формат DJVU)
2.Video pattern generator -автор: Marcelo Maggi
3.Зарубежные интегральные видеокодеры
Статья из ж. " Радиоаматор " №1-3 2002 г.автор:С.М.Рюмик (формат DJVU)
4.Даташиты на м/c TDA8505,CXA1645M в формате DJVU (я преобразовал из PDF -
меньше во много раз занимают места).

Для генерации видеосигнала достаточно всего одного микроконтроллера и двух резисторов. То есть можно сделать буквально карманный генератор видеосигнала размером с брелок. Такой прибор пригодится телемастеру. Его можно использовать при сведении кинескопа, регулировке чистоты цвета и линейности.

Работа генератора и его характеристики.
Генератор подключается к видеовходу телевизора, обычно это разъем типа "тюльпан" или "SCART"
Прибор генерирует шесть полей:
- текстовое поле из 17 строк;
- сетка 8x6;
- сетка 12x9;
- мелкое шахматное поле 8x6;
- крупное шахматное поле 2x2;
- белое поле.

Переключение между полями осуществляется кратковременным (длительностью менее 1с.) нажатием кнопки S2. Удержание этой кнопки в нажатом состоянии более длительное время (дольше 1 с.) приводит к выключению генератора (микроконтроллер переходит в состояние "SLEEP"). Включение генератора производится нажатием кнопки S1. О состоянии прибора (включен / выключен) сигнализирует светодиод.

Технические характеристики прибора:
- тактовая частота - 12 МГц;
- напряжение питания 3 - 5 В;
- ток потрребления в рабочем режиме:
- при напряжении питания 3В - около 5мА;
- при напряжении питания 5В - около 12мА;
- частота кадров - 50 Гц;
- число строк в кадре - 625.

Схема.
Схема очень проста.
Вся работа по формир-
ованию видеосигнала
выполняется программой,
зашитой в микрокон-
троллере. Два резистора
вместе с сопротивлением
видеовхода телевизора
обеспечивают необходи-
мые уровни напряжения
видеосигнала:
- 0 В - синхроуровень;
- 0,3 В - уровень черного;
- 0,7 В - уровень серого;
- 1 В - уровень белого.

Для формирования видеосигнала используется нулевой бит PORTA и целиком весь PORTB. (Этот порт работает в сдвиговом режиме. Несмотря на то, что сигнал снимается только с его нулевого бита, программа использует его весь. Поэтому все биты PORTB настроены как выходы.) Первый бит PORTA используется для индикации состояния генератора. Когда прибор включен, - светодиод горит. Когда прибор выключен, - светодиод погашен. Третий бит PORTA используется для переключения режимов работы генератора и его выключения. Кратковременное нажатие кнопки S2 позволяет перейти от одного поля генератора к другому. При удержании этой кнопки в нажатом состоянии дольше 1 с. прибор выключается (микроконтроллер переходит в состояние "SLEEP"). Чтобы включить генератор необходимо выполнить сброс. Это осуществляется нажатием кнопки S1. Напряжение питания прибора можно выбрать в пределах 3 - 5 В. При этом соответственно должны быть подобраны номиналы резисторов.
3В...– R5=456Ом и R6=228Ом
3,5В – R5=571Ом и R6=285Ом
4В...– R5=684Ом и R6=342Ом
4,5В – R5=802Ом и R6=401Ом
5В...- R5=900Ом и R6=450Ом
Здесь указаны расчетные значения. Реально можно ставить резисторы из стандартного ряда, например для 5В - 910Ом и 470Ом, а для 3В - 470Ом и 240Ом.
Напряжение питания генератора может быть и меньше 3В. Для каждого конкретного PICа минимум следует определять эксперементально. У меня, например, 20МГц-й PIC выпуска 2001 года работал и при 2,3 В.

Прграмма.
Программа формирует 6 полей. Каждое поле состоит из 301 строки (300 информационных строк + одна черная). Вообще расчетное число – 305 (625 строк растра - 15 строк кадровой синхронизации = 610. Информация в кадре выводится через строку (подробнее об этом смотри здесь), поэтому 610 / 2 = 305). Но при таком числе строк размер растра по вертикали получается немного больше того, что формирует видеосигнал, передаваемый телецентром.
Первая строка в каждом поле черная. В это время опрашивается состояние кнопки S2, вычисляется время удержания ее в нажатом состоянии и определяется необходимость перехода от одного поля к другому.
В графических полях есть небольшие искажения вертикальных линий. Это связано с тем, что длина некоторых строк на пару тактов больше остальных из за необходимости установления счетчиков циклов. Вцелом подпрограммы, формирующие графические поля, очень просты, поэтому нет необходимости их коментировать.
Подробнее разберем ту часть программы, которая формирует текстовое поле. Это наиболее сложный участок программы, занимает большую ее часть, использует максимум ресурсов микроконтроллера (вся память данных и значительная часть ОЗУ). Здесь используются фрагменты кода, взятые из игры Pong, которую написал Rickard Gunee.
Текстовое поле состоит из 17 строк, каждая из которых может состоять не более, чем из восьми символов. Символы отображаются через строку, то есть одна строка текста занимает 17 строк растра. (Такое отображение связано с ограниченными возможностями PIC.) Информация о графике символов хранится в памяти программ в разделе таблица. Информация о тексте строк хранится в памяти данных (64 слова = 8 строк по 8 символов). Например в строке 08h (адресами от 08h до 0Fh) записано следующее:.20.60.48.50.90.58.20 20. Каждое значение - это координата (смещение от начала) символа в таблице. Значение.20. соответствует пробелу, .60. - буква "В", .48. - буква "И", и так далее. А все вместе образует "_ВИДЕО__".
Разберем на примере, как выводится текст. Согласно программе, в 12-й текстовой строке экрана необходимо вывести информацию, на которую ссылается строка памяти данных 28h (A0 B8 68 C8 D8 70 E0 D0). Таким образом, в следующих 17 строках растра должен быть выведен текст: " p i c 1 6 f 8 4 ". Это происходит следующим образом. В первой из 17 строк выводится только черный уровень. В эти 64 мкс, пока на экране отображается черная строка, в регистры ОЗУ переписываются "верхние значения" символов: 00h.от "p", 08h от "i", 00h от "c" 18h от "1" и так далее. Во время следующей строки эти данные последовательно передаются в PORTB, то есть на видеовыход. Третья строка снова черная. За время ее выполнения, в буфер переписываются "вторые сверху" значения символов: 00h.от "p", 00h от "i", 00h от "c" 1Ch от "1"… В четвертой строке эти данные выводятся на экран. И так далее, пока вся строка не будет отображена.
Подпрограмма кадровой синхронизации целиком взята из игры Pong, которую написал Rickard Gunee . Эта подпрограмма короткая, но довольно запутанная. Если объяснять, как она работает то, получится еще длиннее и запутаннее. Лучше всего положить рядом текст подпрограммы и рисунок осциллограммы кадровых синхроимпульсов, и не торопясь разобрать каждую строку кода. Скажу только, что подпрограмма начинает выполняться не с верхней строчки, а из середины (:-)), от метки "vertsync".

Разгон PIC16F84.
Как видно из схемы в этом проекте микроконтроллер работает на частоте 12МГц. На сегодняшний день выпускаются три версии PIC16F84: на 4МГц, на 10МГц и на 20МГц. (на 1.1.2002 соотношение цен приблизительно такое: $3.5, $5.3 и $6.3) В своем проекте Pong Rickard Gunee утверждает, что использовал 4МГц-е PIC16F84 и они часами работали на частоте 12МГц без проблем. Я попробовал, и действительно 4МГц-й PIC нормально работает на частоте, которая в три раза (!!!) превышает его допустимую частоту (правда я не стал испытывать судьбу и включал генератор лишь на несколько минут). При этом у 4МГц-го PICа потребляемый ток был на 10 .. 20 % больше, чем у 20МГц-го (отсюда, видимо и ограничение по частоте). Думаю, что 10МГц-й микроконтроллер можно разгонять до 12МГц без риска, но в коммерческих проектах этого, конечно же, делать не стоит.

Изготовление.

Пробник-генератор ТВ сигнала собран на основе микроконтроллере серии pic12f629, и по совокупности габаритов, потребления тока, стоимости изготовления прибора и функционалу для телемастера, просто незаменим. Напряжение питания 3 вольта, т.е. две пальчиковые батарейки. Ток потебления в режиме генерации 11 миллиампер, в режиме сна - всего 3 микроампера.

Принципиальная схема ТВ генератора сигнала

Рисунок печатной платы


Данный пробник умеет генерировать пять картинок, что вполне достаточно для проверки и ремонта строчной, кадровой развёрток телевизора, регулировки сведения и геометрических искажений растра, баланса цвета, контроля прохождения сигналов по цепям телевизора. При кратковременном нажатии на кнопку он просыпается и начинает генерировать первую картинку, при последующих нажатиях на неё картинки переключаютса по кругу. При длительном удержании кнопки, в момент отпускания генератор переходит в режим сна. Также в режим сна он переходит автоматически если он включен более 5 минут.


К статье прилогается архив, в котором есть схема, плата пробника, две прошивки . На видео видно, что у меня на телевизоре картинка слегка не линейна - это потому, что телевизору 12 лет, а может что-то в видеовходе не то.


Copyright © 2024 Menzernarus - Автомобильный портал.