Как сделать автоматическое зарядное устройство для автомобильного аккумулятора своими руками. Автоматическое зарядное устройство для автомобильных аккумуляторов Автоматическое отключение зарядки аккумулятора автомобиля

Очень простая схема зарядного устройства, в котором используется только один транзистор для определения напряжения автоматического отключения аккумулятора от сети, когда он будет полностью заряжен.

Описание схемы зарядного устройства автомобильного аккумулятора

На рисунке мы видим простую схему, где один транзистор включен в его стандартном режиме работы.

Принцип работы схемы можно понять из следующих пунктов:

  1. Заряд аккумулятора считается законченным, когда напряжение на его клеммах достигнет 13,5 – 14 вольт.
  2. Порог отключения (13,5 – 14 вольт) устанавливается подстроечным резистором R2 при подключенном, полностью заряженном аккумуляторе. Когда напряжение на клеммах аккумулятора будет около 14 вольт, транзистор Т1 включит реле и цепь заряда будет разорвана.

Это автоматическое автомобильное зарядное устройство не только просто в изготовлении, но и достаточно умное для того что бы заботиться о состоянии аккумулятора и заряжать его очень эффективно.

Список деталей:

  • R1 = 4,7 кОм;
  • R2 = 10K подстроечный;
  • T1 = ;
  • Реле = 12В, 400 Ом, SPDT;
  • TR1 = напряжение вторичной обмотки 14 В, ток 1/10 от емкости АКБ;
  • Диодный мост = на ток равный номинальному току трансформатора;
  • Диоды D2 и D3 = 1N4007;
  • C1 = 100uF/25V.

От администратора сайта

Статья носит теоретический характер, на практике я эту схему не собирал . Рекомендую обратить внимание на такие важные моменты:

  1. Отключение аккумулятора от зарядного устройства происходит при достижении зарядного напряжения 13,5 – 14 вольт. Устанавливать этот порог напряжения (подстроечный резистор R2) нужно при подключенном, полностью заряженном аккумуляторе. Если заряженного аккумулятора нет, тогда нужно R2 выставить в нижнее (по схеме) положение, то есть «посадить» базу транзистора на землю. Затем подключить аккумулятор и включить зарядное устройство в сеть. Далее нужно постоянно контролировать зарядное напряжение, когда оно достигнет 13,5 – 14 вольт нужно выставить R2 в такое положение, что бы реле разомкнуло свои контакты.
  2. При достижении на клеммах аккумулятора напряжения 13,5 – 14 вольт, устройство отключается от аккумулятора. Далее при снижении напряжения до 11,4 вольт, зарядка снова возобновляется. В оригинале статьи написано, что такой гистерезис обеспечивают диоды в эмиттере транзистора.
  3. В схеме отсутствует ограничение зарядного тока , поэтому рекомендую при изготовлении этого зарядного устройства использовать трансформатор мощностью не менее 150 ватт, вторичная обмотка которого рассчитана на ток не менее 10 ампер. Диодный мост так же должен соответствовать указанному току.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля
зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты
от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ
при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 - любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двух полярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется не инвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Не инвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах
без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора
автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Кому некогда «заморачиваться» со всеми нюансами зарядки автомобильного аккумулятора, следить за током зарядки, вовремя отключить, чтоб не перезарядить и т.д., можно порекомендовать простую схему зарядки автомобильного АКБ с автоматическим отключением при полной зарядке аккумулятора. В этой схеме используется один не мощный транзистор для определения напряжения на аккумуляторе.

Схема простого автоматического зарядного устройства автомобильного аккумулятора

Список необходимых деталей:

  • R1 = 4,7 кОм;
  • Р1 = 10K подстроечный;
  • T1 = BC547B, КТ815, КТ817;
  • Реле = 12В, 400 Ом, (можно автомобильное, например: 90.3747);
  • TR1 = напряжение вторичной обмотки 13,5-14,5 В, ток 1/10 от емкости АКБ (например: АКБ 60А/ч — ток 6А);
  • Диодный мост D1-D4 = на ток равный номинальному току трансформатора = не менее 6А (например Д242, КД213, КД2997, КД2999 …), установленные на радиаторе;
  • Диоды D1(параллельно реле), D5,6 = 1N4007, КД105, КД522…;
  • C1 = 100uF/25V.
  • R2, R3 — 3 кОм
  • HL1 — АЛ307Г
  • HL2 — АЛ307Б

В схеме отсутствует индикатор зарядки, контроля тока (амперметр) и ограничение зарядного тока. При желании можно поставить на выход амперметр в разрыв любого из проводов. Светодиоды (HL1 и HL2) с ограничительными сопротивлениями (R2 и R3 — 1 кОм) или лампочки параллельно С1 «сеть», а к свободному контакту RL1 «конец заряда».

Изменённая схема

Ток, равный 1/10 от ёмкости АКБ подбирается количеством витков вторичной обмотки трансформатора. При намотке вторички трансформатора необходимо сделать несколько отводков для подбора оптимального варианта зарядного тока.

Заряд автомобильного (12-ти вольтового) аккумулятора считается законченным, когда напряжение на его клеммах достигнет 14,4 вольт.

Порог отключения (14,4 вольт) устанавливается подстроечным резистором Р1 при подключенном и полностью заряженном аккумуляторе.

При зарядке разряженного аккумулятора напряжение на нём будет около 13В, в процессе зарядки ток будет падать, а напряжение возрастать. Когда напряжение на аккумуляторе достигнет 14,4 вольт, транзистор Т1 отключит реле RL1 цепь заряда будет разорвана и АКБ отключится от зарядного напряжения с диодов D1-4.

При снижении напряжения до 11,4 вольт, зарядка снова возобновляется, такой гистерезис обеспечивают диоды D5-6 в эмиттере транзистора. Порог срабатывания схемы становится 10 + 1,4 = 11,4 вольт, которые могут быть рассмотрены как для автоматического перезапуска процесса зарядки.

Такое самодельное простое автоматическое автомобильное зарядное устройство поможет Вам проконтролировать процесс зарядки, не проследить окончание зарядки и не перезарядить свой аккумулятор!

Использованы материалы сайта:homemade-circuits.com

Другой вариант схемы зарядного устройства для 12-ти вольтового автомобильного аккумулятора с автоматическим отключением по окончании зарядки

Схема немного сложнее предыдущей, но с более чётким срабатыванием.

Таблица напряжений и процент разряженности АКБ, не подключенных к зарядному устройству


П О П У Л Я Р Н О Е:

    В последние годы электронные приборы находят все большее применение в автомобильном транспорте, в том числе и приборы электронного зажигания. Прогресс автомобильных карбюраторных двигателей неразрывно связан с их дальнейшим совершенствованием. Кроме того, сейчас к приборам зажигания предъявляются новые требования, направленные на радикальное повышение надежности, обеспечение топливной экономичности и экологической чистоты двигателя.

    Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

    В предыдущей статье мы рассматривали

Зарядное устройство для автомобильных аккумуляторов желательно дополнить автоматом, включающим его при понижении напряжения на аккумуляторе до минимума и отключающим после зарядки. Особенно это актуально при использовании батареи в качестве резервного питания или при долгосрочном хранении аккумулятора без работы - для предотвращения саморазряда .

Предлагаемая схема самодельного автомата включает аккумуляторную батарею на зарядку при понижении на ней напряжения до определенного уровня и отключает при достижении максимума.

Максимальным напряжением для кислотных автомобильных аккумуляторов является величина 14,2...14,5 В, а минимально допустимое при разряде - 10,8 В. Минимум желательно ограничить для большей надежности величиной 11,5...12 В.

Схема автомата включения-отключения зарядного устройства состоит из компаратора на транзисторах VT1, VT2 и ключа на VT3, VT4.

Нажмите на рисунок для просмотра.

Работает устройство следующим образом. После подключения батареи и включения сети нажимают кнопку SB1 "Пуск". Транзисторы VT1 и VT2 закрываются, открывая ключ VT3, VT4, включающий реле К1. Оно своими нормально замкнутыми контактами К1.2 отключает реле К2, нормально замкнутые контакты которого (К2.1), замыкаясь, подключают зарядное устройство (ЗУ) к сети.Такая сложная схема коммутаций используется по двум причинам:

во-первых, обеспечивается развязка высоковольтной цепи от низковольтной;

во-вторых, чтобы реле К2 включалось при максимальном напряжении АБ и отключалось при минимальном, т.к. примененное реле РЭС22 (паспорт РФ 4500163) имеет напряжение включения 12...12,5 В.

Контакты К1.1 реле К1 переключаются в нижнее по схема положение. В процессе зарядки АБ напряжение на резисторах R1 и R2 возрастает, и при достижении на базе VT1 отпирающего напряжения, транзисторы VT1 и VT2 открываются, закрывая ключ VT3, VT4.

Реле К1 отключается, включая К2. Нормально замкнутые контакты К2.1 размыкаются и обесточивают зарядное устройство. Контакты К1.1 переходят в верхнее по схеме положение. Теперь напряжение на базе составного транзистора VT1, VT2 определяется падением напряжения на резисторах R1 и R2. По мере разряда АБ напряжение на базе VT1 снижается, и в какой-то момент VT1, VT2 закрываются, открывая ключ VT3, VT4. Снова начинается цикл зарядки. Конденсатор С1 служит для устранения помех от дребезга контактов К1.1 в момент переключения.

Регулировку устройства проводят без АБ и зарядного устройства. Необходим регулируемый источник постоянного напряжения с пределами регулировки 10...20 В. Его подключают к выводам схемы вместо GB1.

Движок резистора R1 переводят в верхнее положение, а движок R5 - в нижнее. Напряжение источника устанавливают равным минимальному напряжению батареи (11.5...12 В). Перемещением движка R5 добиваются включения реле К1 и светодиода VD7. Затем, поднимая напряжение источника до 14,2...14,5 В, перемещением движка R1 достигают отключения К1 и светодиода. Изменяя напряжение источника в обе стороны, убеждаются, что включение устройства происходит при напряжении 11,5...12 В, а отключение - при 14,2...14,5 В. На этом регулировка заканчивается.

А. Коробков

Дополнив имеющееся в вашем распоряжении зарядное устройство для автомобильной аккумуляторной батареи предлагаемым автоматом, можете быть спокойны за режим зарядки батареи - как только напряжение на ее выводах достигнет (14,5±0,2)В, зарядка прекратится. При снижении напряжения до 12,8...13 В зарядка возобновится.

Приставка может быть выполнена в виде отдельного блока либо, встроена в зарядное устройство. В любом случае необходимым условием для ее работы будет наличие пульсирующего напряжения на выходе зарядного устройства. Такое напряжение получается, скажем, при установке в устройстве двухполупериодного выпрямителя без сглаживающего конденсатора.

Схема приставки-автомата приведена на рис. 1.


Она состоит из тринистора VS1, узла управления тринистором А1, выключателя автомата SА1 и двух цепей индикации - на светодиодах НL1 и НL2. Первая цепь индицирует режим зарядки, вторая - контролирует надежность подключения аккумуляторной батареи к зажимам приставки-автомата. Если в зарядном устройстве есть стрелочный индикатор - амперметр, первая цепь индикации не обязательна.

Узел управления содержит триггер на транзисторах VТ2, VТ3 и усилитель тока на транзисторе VT1. База транзистора VТЗ подключена к движку подстроечного резистора R9, которым устанавливают порог переключения триггера, т. е. напряжение включения зарядного тока. «Гистерезис» переключения (разность между верхним и нижним порогами переключения) зависит в основном от резистора R7 и при указанном на схеме сопротивлении его составляет около 1,5 В.

Триггер подключен к проводникам, соединенным с выводами аккумуляторной батареи, и переключается в зависимости от напряжения на них.

Транзистор VT1 подключен базовой цепью к триггеру и работает в режиме электронного ключа. Коллекторная же цепь транзистора соединена через резисторы R2, R3 и участок управляющий электрод - катод тринистора с минусовым выводом зарядного устройства. Таким образом, базовая и коллекторная цепи транзистора VT1 питаются от разных источников: базовая - от аккумуляторной батареи, а коллекторная - от зарядного устройства.

Тринистор VS1 выполняет роль коммутирующего элемента. Использование его вместо контактов электромагнитного реле, которое иногда применяют в этих случаях, обеспечивает большое число включений - выключений зарядного тока, необходимых для подзарядки аккумуляторной батареи во время длительного хранения.

Как видно из схемы, тринистор подключен катодом к минусовому проводу зарядного устройства, а анодом - к минусовому выводу аккумуляторной батареи. При таком варианте упрощается управление тринистором: при возрастании мгновенного значения пульсирующего напряжения на выходе зарядного устройства через управляющий электрод,тринистора сразу начинает протекать ток (если, конечно, открыт транзистор VТ1). А когда на аноде тринистора появится положительное (относительно катода) напряжение, тринистор окажется надежно открытым. Кроме того, подобное включение выгодно тем, что тринистор можно крепить непосредственно к металлическому корпусу приставки-автомата или корпусу зарядного устройства (в случае размещения приставки внутри его) как к теплоотводу.

Выключателем SА1 можно отключить приставку, поставив его в положение «Ручн.». Тогда контакты выключателя будут замкнуты, и через резистор R2 управляющий электрод тринистора окажется подключенным непосредственно к выводам зарядного устройства. Такой режим нужен, например, для быстрой зарядки аккумулятора перед установкой его на автомобиль.

Транзистор VT1 может быть указанной на схеме серии с буквенными индексами А - Г; VТ2 и VТ3 - КТ603А - КТ603Г; диод VD1 -любой из серий Д219, Д220 либо другой кремниевый; стабилитрон VD2 - Д814А, Д814Б, Д808, Д809; тринистор - серии КУ202 с буквенными индексами Г, Е, И, Л, Н, а также Д238Г, Д238Е; светодиоды - любые из серий АЛ102, АЛ307 (ограничительными резисторами R1 и R11 устанавливают нужный прямой ток используемых светодиодов).

Постоянные резисторы - МЛТ-2 (R2), МЛТ-1 (R6), МЛТ-0,5 (R1, R3, R8, R11), МЛТ-0,25 (остальные). Подстроечный резистор R9 - СП5-16Б, но подойдет другой, сопротивлением 330 Ом...1,5 кОм. Если сопротивление резистора больше указанного на схеме, параллельно его выводам подключают постоянный резистор такого сопротивления, чтобы общее сопротивление составило 330 Ом.

Детали узла управления монтируют на плате (рис. 2)


Из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм.

Подстроечный резистор укрепляют в отверстии диаметром 5,2 мм так, чтобы его ось выступала со стороны печати.

Плату укрепляют внутри корпуса подходящих габаритов либо, как было сказано выше, внутри корпуса зарядного устройства, но обязательно возможно дальше от нагревающихся деталей (выпрямительных диодов, трансформатора, тринистора). В любом случае напротив оси подстроечного резистора в стенке корпуса сверлят отверстие. На лицевой стенке корпуса укрепляют светодиоды и выключатель SА1.

Для установки тринистора можно изготовить теплоотвод общей площадью около 200 см2. Подойдет, например, пластина дюралюминия толщиной 3 мм и размерами 100X100 мм. Теплоотвод прикрепляют к одной из стенок корпуса (скажем, задней) на расстоянии около 10 мм - для обеспечения конвекции воздуха. Допустимо прикрепить теплоотвод и к наружной стороне стенки, вырезав в корпусе отверстие под тринистор.

Перед креплением узла управления его нужно проверить и определить положение движка подстроечного резистора. К точкам 1, 2 платы подключают выпрямитель постоянного тока с регулируемым выходным напряжением до 15 В, а цепь индикации (резистор R1 и светодиод НL1) -к точкам 2 и 5. Движок подстроечного резистора устанавливают в нижнее по схеме положение и подают на узел управления напряжение около 13 В. Светодиод должен гореть. Перемещением движка подстроечного резистора вверх по схеме добиваются погасания светодиода. Плавно увеличивая напряжение питания узла управления до 15 В и уменьшая до 12 В, добиваются подстроечным резистором, чтобы светодиод зажигался при напряжении 12,8... 13 В и погасал при 14,2..14,7 В.

Зарядное устройство.

В сборнике «В помощь радиолюбителю» № 87 было помещено описание автоматического зарядного устройства К. Кузьмина, которое в условиях хранения аккумулятора в зимнее время позволяет автоматически включать его на зарядку при снижении напряжения и также автоматически выключать зарядку при достижении напряжения, соответствующего полностью заряженному аккумулятору. Недостатком этой схемы является ее относительная сложность, так как управление включением и выключением зарядки осуществляется двумя раздельными узлами. На рис. 1 приведена электрическая принципиальная схема зарядного устройства, свободная от этого недостатка: указанные функции осуществляются одним узлом.


Схема обеспечивает два режима работы - ручной и автоматический.

В ручном режиме работы тумблер SА1 находится во включенном -состоянии. После включения тумблера Q1 напряжение сети поступает на первичную обмотку трансформатора Т1 и загорается индикаторная лампочка HL1. Переключателем SА2 устанавливается необходимый ток зарядки, который контролируется амперметром РА1. Напряжение контролируется вольтметром РU1. Работа схемы автоматики на процесс зарядки в ручном режиме не влияет.

В автоматическом режиме тумблер SА1 разомкнут. Если напряжение аккумуляторной батареи меньше 14,5 В, напряжение на выводах стабилитрона VD5 получается меньше, чем необходимо для его отпирания, и транзисторы VТ1, VТ2 заперты. Реле К1 обесточено и его контакты К1.1 и К1.2 замкнуты. Первичная обмотка трансформатора Т1 подключена к сети через контакты реле К 1.1. Контакты реле К 1.2 замыкают переменный резистор R3. Происходит зарядка аккумуляторной батареи. При достижении напряжения на аккумуляторе 14,5 В стабилитрон VD5 начинает проводить ток, что приводит к отпиранию транзистора VТ1, а следовательно, и транзистора VТ2. Срабатывает реле и контактами К1.1 выключает питание выпрямителя. Благодаря размыканию контактов К1.2 в цепь делителя напряжения включается дополнительный резистор R3. Это приводит к увеличению напряжения на стабилитроне, который теперь остается в проводящем состоянии даже после того, как напряжение на аккумуляторной батарее окажется меньше 14,5 В. Зарядка аккумулятора прекращается и наступает режим хранения, в процессе которого происходит медленный саморазряд. В этом режиме схема автоматики получает питание от аккумуляторной батареи. Стабилитрон VD5 перестанет пропускать ток только после того, как напряжение аккумуляторной батареи понизится до 12,9 В. Тогда вновь запрутся транзисторы VТ1 и VТ2, реле обесточится и контактами К1.1 включит питание выпрямителя. Вновь начнется зарядка аккумулятора. Контакты К1.2 также замкнутся, напряжение на стабилитроне дополнительно понизится, и он начнет пропускать ток только после того, как напряжение на аккумуляторе увеличится до 14,5 В, то еcть когда аккумулятор будет полностью заряжен.

Настройка узла автоматики зарядного устройства производится следующим образом. Соединитель ХР1 к сети не подключается. К соединителю ХР2 вместо аккумуляторной батареи присоединяется стабилизированный источник постоянного тока с регулируемым выходным напряжением, которое устанавливается по вольтметру, равным 14,5 В. Движок переменного резистора R3 устанавливается в нижнее по схеме положение, а движок переменного резистора R4 - верхнее по схеме положение. При этом транзисторы должны быть заперты, а реле обесточено. Медленно вращая ось переменного резистора R4, нужно добиться срабатывания реле. Затем на клеммах соединителя Х2 устанавливается напряжение 12,9 В и медленным вращением оси переменного резистора R3 нужно добиться отпускания реле. В связи с тем что при отпускании реле резистор R3 замыкается контактами К1.2, эти регулировки оказываются независимыми одна от другой. Сопротивления резисторов делителя напряжения R2-R5 рассчитаны таким образом, что срабатывание и отпускание реле должны происходить соответственно при напряжениях 14,5 и 12,9 В в средних положениях переменных резисторов R3 и R4. Если необходимы другие значения напряжений срабатывания и отпускания реле, а пределов регулировки переменными резисторами окажется недостаточно, придется подобрать сопротивления постоянных резисторов R2 и R5.

В зарядном устройстве может быть применен такой же сетевой трансформатор, как и в устройстве К. Казьмина, но без обмотки III. Реле - любого типа с двумя группами размыкающих или переключающих контактов, надежно работающее при напряжении 12 В. Можно, например, использовать реле РСМ-3 паспорт РФ4.500.035П1 или РЭС6 паспорт РФ0.452.125Д.

Электронный сигнализатор зарядки аккумуляторной батареи.

А. Коробков

Чтобы продлить срок эксплуатации автомобильной аккумуляторной батареи, необходим эффективный контроль за режимом ее зарядки. Описываемое устройство сигнализирует водителю, когда напряжение на аккумуляторной батарее повышено и когда оно понижено, а генератор не работает. В случае повышенного потребления тока в бортовой сети при малой частоте вращения ротора генератора сигнализатор не срабатывает.

При разработке устройства ставилась цель разместить его в корпусе имеющегося в автомобиле сигнального реле РС702, что обусловило особенности конструкции сигнализатора и типы примененных транзисторов.

Принципиальная схема электронного сигнализатора вместе с цепями связи его с элементами бортовой сети приведена на рис. 1.


На транзисторах VT2, VT3 выполнен триггер Шмитта, на VT1 -узел запрета его срабатывания. В коллекторную цепь транзистора VT3 включена индикаторная лампа HL1, размещенная на приборном щитке. В горячем состоянии нить накала имеет сопротивление около 59 Ом. Сопротивление холодной нити в 7... 10 раз ниже. В связи с этим vтранзистор VT3 должен выдерживать бросок тока в коллекторной цепи до 2,5 А. Этому требованию удовлетворяет транзистор КТ814.

Аналогичные транзисторы используются и в качестве VT1 и VT2. Но здесь причиной их выбора послужило стремление получить малые геометрические размеры устройства - три транзистора устанавливают один под другим и закрепляют общим винтом с гайкой.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R5R6 подается на базу транзистора VT2. Если оно выше 13,5 В, триггер Шмитта переключается в состояние, при котором выходной транзистор VT3 закрыт и лампа HL1 не горит.

База транзистора VT2 через стабилитрон VD1 и делитель R1R2 соединена также со средней точкой обмотки генератора. При исправном генераторе в ней относительно его плюсового вывода создается пульсирующее напряжение с амплитудой, равной половине генерируемого напряжения. Поэтому, если даже из-за большой токовой нагрузки в бортовой сети напряжение упадет ниже 13,5 В, ток с делителя R1R2 поступает в базу транзистора VT2 и не разрешает горение лампы. Чтобы исключить запрещение на включение сигнализации, когда отсутствует ток в обмотке возбуждения генератора, используется цепь, состоящая из делителя R1R2 и стабилитрона VD1. Она предотвращает попадание тока утечки через выпрямительные диоды генератора (в худшем случае до 10 мА) в базу транзистора VT2.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R3R4 подается также на базу транзистора VT1, участок коллектор - эмиттер которого шунтирует базовую цепь транзистора VT2. При напряжении сети выше 15 В транзистор VT1 переходит в режим насыщения. При этом триггер Шмитта переключается в состояние, при котором транзистор VT3 открыт и, следовательно, зажигается лампа HL1.

Таким образом, лампа красного света на приборном щитке загорается, когда отсутствует ток зарядки и напряжение сети ниже 13,5 В, а также когда оно выше 15 В.

При использовании в автомобиле электронного регулятора напряжения, не имеющего отдельного провода к клемме аккумуляторной батареи, из-за падения напряжения (около 0,1...0,2 В) в цепи до входной клеммы регулятора (чаще всего в режиме холостого хода) при выключенных потребителях тока наблюдается кратковременное периодическое пропадание зарядного тока от генератора. Длительность и период такого эффекта обусловлены временем спадания напряжения на аккумуляторной батарее на 0,1...0,2 В и временем повышения его на то же значение и составляют, в зависимости от состояния аккумуляторной батареи, около 0,3...0,6 с и 1...3 с соответственно. При этом с таким же тактом срабатывает сигнальное реле РС702, зажигая лампу. Такой эффект нежелателен. Описываемый электронный сигнализатор исключает его, так как при кратковременных пропаданиях зарядного тока напряжение в бортовой сети не достигает нижнего порога 13,5 В.

Электронный сигнализатор выполнен на базе имеющегося в автомобиле сигнального реле РС702. Само реле с гетинаксовой платы удалено (после ликвидации заклепки). Кроме того, удалены заклепка с контактного лепестка «87» и Г-образная стойка у его основания.

Элементы сигнализатора монтируют на печатной плате (рис. 2)


Из фольгированного стеклотекстолита толщиной 1,5...2 мм. Транзисторы VT1-VT3 размещены по оси центрального отверстия платы: VT3 со стороны печатного монтажа коллекторной пластиной от платы, а VT2, VT1 (в указанном порядке) - с противоположной стороны платы коллекторными пластинами в сторону платы. Перед пайкой все три транзистора нужно стянуть винтом МЗ с гайкой. Их выводы соединяют с точками плиты полуженными медными проводниками, впаянными и нужные отверстии платы. Резисторы R3 и R5 припаивают не к токопроподящим дорожкам, а к штырям из провода. Это облегчает их замену при налаживании устройства. Элементы VD1 и VD2 устанавливают вертикально жестким выводом к плате. Так же вертикально расположен конденсатор С1, помещенный в хлорвиниловую трубку по диаметру конденсатора.

В сигнализаторе следует применять резисторы (кроме R8)-ОМЛТ (МЛТ) с номиналами и мощностью рассеивания, указанными на схеме. Допуск по номиналам ±10 %. Резистор R8 изготавливают из высокоомного провода, намотанного (1-2 витка) на резистор МЛТ-0,5. Конденсатор C1 - К50-12. Транзисторы VT1 - VT3 -любые из серии КТ814 или КТ816. Элемент VD1 - стабилитрон Д814 с любым буквенным индексом, VD2 - Д814Б или Д814В.

После окончания монтажа печатной платы электронный сигнализатор собирают в такой последовательности:
снимают гайку и винт, стягивающие транзисторы;
в сквозные отверстия транзисторов VT1, VT2 помещают хлорвиниловую трубку диаметром 3 мм;
в освободившуюся от реле РС702 плату вставляют лепестки (выводы) «30/51» (в центре) и «87»; последний закрепляют винтом М3 (головкой со стороны вывода) с гайкой высотой 3 мм;
винт М2,7 длиной 15...20 мм пропускают через отверстие в плате от реле РС702 (со стороны вывода «30/51»), затем насаживают на концы винтов смонтированную плату с транзисторами;
обеспечивают контакт вывода «30/51» с коллекторной пластиной транзистора VT3 (путем ее плотного прилегания к плоской части вывода);
проверяют наличие соединения вывода «87» с печатной платой через гайку с винтом;
короткие штырьки выводов «85» и «86» подгибают так, чтобы они вошли в предназначенные для них отверстия на печатной плате;
с помощью гаек М2,7 и МЗ с шайбами скрепляют обе платы;
припаивают штырьки выводов «85» и «86» к токопроводящим дорожкам.

При налаживании сигнализатора требуются блок питания с регулируемым напряжением от 12 до 16 В и лампа мощностью 3 Вт на 12 В.

Сначала при отключенном, резисторе R5 подбирают резистор R3. Необходимо добиться, чтобы при увеличении напряжения лампа загоралась в момент достижения 14,5... 15 В. Затем подбирают резистор R5 так, чтобы лампа зажигалась, когда напряжение снижается до 13,2...13,5 В.

Налаженный сигнализатор устанавливают на место реле РС702, при этом вывод «86» соединяют с «массой» автомобиля коротким проводом под винт крепления самого сигнализатора. К остальным выводам подключают провода электрооборудования, как это предусмотрено штатной схемой автомобиля с реле РС702, т. е. к выводу «85» - провод от средней точки генератора (желтый), к «30/51» - провод от лампы индикации (черный), к «87» - провод «±12 В» (оранжевый).

Испытания сигнализатора показали следующий результат. При коротком замыкании регулятора свечение лампы наблюдается при повышении частоты вращения генератора и зависит от нее. При изъятии предохранителя в цепи регулятора лампа загорается примерно через минуту независимо от частоты вращения. Этой информации достаточно, чтобы установить причину и вид неисправности системы генератор - регулятор напряжения.

При включении зажигания через час и более после остановки двигателя индикация работает, как и с релейным сигнализатором. Если же оно включается через незначительное время (менее 5 мин), лампа - сигнализатор зарядки не зажигается, но при пуске двигателя стартером вспыхивает и гаснет, свидетельствуя об исправности сигнализатора.

Установка описанного регулятора вместо штатного РС702 в автомобилях «Жигули» (ВАЗ-2101, ВАЗ-2102, ВАЗ-2103, ВАЗ-2106 и др.) позволит однозначно предупредить водителя о всех отклонениях в режиме работы аккумуляторной батареи и сохранить ее от губительной перезарядки.
[email protected]



Copyright © 2024 Menzernarus - Автомобильный портал.